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Introduction

Apart from the nuclear shielding constants, the indirect nu-
clear spin–spin coupling constants represent the most impor-
tant source of information in high-resolution nuclear mag-
netic resonance (NMR) spectroscopy. Their importance is

twofold. First, since the magnitude of the indirect spin–spin
coupling constants depends critically on the nature of the
molecular electron distribution, their measurement provides
invaluable information on the chemical bonding of the cou-
pled nuclei. Second, since the indirect spin–spin coupling
constants are sensitive to the molecular geometry, they are
extensively used for structural elucidation. In either case,
the independent quantum-chemical calculation of indirect
spin–spin coupling constants can play an important role in
the interpretation of the measured coupling constants in
terms of the electronic and geometric structure. However,
until now, the rigorous calculation of spin–spin coupling con-
stants has been restricted to small systems, containing much
less than hundred atoms.[1–4] This restriction, which arises
from the severe demands that such calculations place on the
description of the electronic system, is particularly unfortu-
nate since, nowadays, perhaps the greatest need for the reli-
able theoretical prediction of spin–spin coupling constants
stems from a central application area of high-resolution
NMR spectroscopy—namely, the elucidation of the native
structures of biological molecules. In such studies, the indi-
rect spin–spin coupling constants play a crucial role; the vi-
cinal (three-bond) coupling constants, in particular, have for
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Abstract: We present calculations of
indirect nuclear spin–spin coupling
constants in large molecular systems,
performed using density functional
theory. Such calculations, which have
become possible because of the use of
linear-scaling techniques in the evalua-
tion of the Coulomb and exchange-cor-
relation contributions to the electronic
energy, allow us to study indirect spin–
spin couplings in molecules of biologi-
cal interest, without having to construct
artificial model systems. In addition to
presenting a statistical analysis of the
large number of short-range coupling
constants in large molecular systems,
we analyse the asymptotic dependence

of the indirect nuclear spin–spin cou-
pling constants on the internuclear sep-
aration. In particular, we demonstrate
that, in a sufficiently large one-electron
basis set, the indirect spin–spin cou-
pling constants become proportional to
the inverse cube of the internuclear
separation, even though the diamagnet-
ic and paramagnetic spin-orbit contri-
butions to the spin–spin coupling con-
stants separately decay as the inverse

square of this separation. By contrast,
the triplet Fermi contact and spin-
dipole contributions to the indirect
spin–spin coupling constants decay ex-
ponentially and as the inverse cube of
the internuclear separation, respective-
ly. Thus, whereas short-range indirect
spin–spin coupling constants are usual-
ly dominated by the Fermi contact con-
tribution, long-range coupling con-
stants are always dominated by the
negative diamagnetic spin-orbit contri-
bution and by the positive paramagnet-
ic spin-orbit contribution, with small
spin-dipole and negligible Fermi con-
tact contributions.

Keywords: density functional
calculations · NMR spectroscopy ·
response theory · spin–spin
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a long time been used to determine dihedral angles. One-
bond coupling constants, geminal (two-bond) coupling con-
stants, and even long-range proton–proton coupling con-
stants have also found widespread use in structure elucida-
tion. Finally, the recent discovery of coupling constants
transmitted through hydrogen bonds[5] (see also reference [3])
has made the spin–spin constants even more useful for the
determination of the high-order structures of biopolymers.
Clearly, for quantum chemistry to make a substantial con-

tribution to modern NMR structural chemistry, there is a
need for the development of computational techniques that
are not only accurate, but also applicable to large molecular
systems. We here present such an approach. High accuracy
and wide applicability is achieved by combining the techni-
ques recently developed for the accurate calculation of spin–
spin coupling constants in small molecules by Kohn–Sham
density functional theory (DFT),[6–10] with linear-scaling tech-
niques for the calculation of Coulomb interactions in large
systems.[11–16] In this manner, we are now in a position to cal-
culate the indirect spin–spin coupling constants in molecules
that contain several hundred atoms in a routine fashion, with
an accuracy and reliability similar to that in small molecules.
In small molecules, the accurate calculation of indirect nu-

clear spin–spin coupling constants has proved to be signifi-
cantly more difficult than that of most other properties, in
particular, that of the other NMR parameters, such as the
nuclear magnetic shielding constants and the nuclear quad-
rupole coupling constants. First, in RamseyKs nonrelativistic
theory, there are several distinct mechanisms contributing to
the spin–spin coupling constants: the diamagnetic spin-orbit
(DSO) term, the paramagnetic spin-orbit (PSO) term, the
spin-dipole (SD) term, and the Fermi contact (FC) term.[17]

Although the FC term often dominates the short-range cou-
pling constants, none of these contributions can be neglect-
ed, increasing the programming and computational efforts
over that of most other molecular properties, such as polar-
isabilities and shielding constants. Second, the FC and SD
terms involve triplet perturbations, requiring a flexible de-
scription of the molecular electronic structure, not attained
by restricted Hartree–Fock theory, for example. Third, for
an accurate calculation of the FC contribution, it is necessary
to provide a good description of the electron density at the
nuclei, necessitating the use of large Gaussian basis sets. Nev-
ertheless, a variety of techniques have over the years been
developed and routinely used for the calculation of indirect
nuclear spin–spin coupling constants in small to medium-
sized molecules, the most popular ab initio methods being
the second-order polarisation propagator approach (SOPPA)
from 1987,[18–23] the multiconfigurational self-consistent field
(MCSCF) approach from 1992[24–31] and the coupled-cluster
approach from 1994[32–40] (for each of the methods, there are
numerous other applications). In spite of these developments,
DFT remains the only reliable method currently capable of
treating systems that contain more than ten to twenty atoms
and therefore applicable to systems of biological interest. Al-
though the quality is not quite as high as that of the coupled-
cluster singles-and-doubles (CCSD) approximation and in
particular the coupled-cluster single-doubles-and-triples
(CCSDT) approximation, comparisons indicate that the re-

sults obtained with DFT are usually quite accurate, in particu-
lar, for the coupling constants studied in this paper.[41,42]

For small and medium-sized molecular systems, the calcula-
tion of indirect spin–spin coupling constants by DFT is
dominated by the evaluation of the Coulomb and exchange-
correlation contributions to the total energy and to the linear
transformations required for the iterative solution of the re-
sponse equations. Such calculations cannot be extended to
large systems unless the Coulomb and exchange-correlation
contributions to the Kohn–Sham matrices, constructed in the
course of the optimisation of the electronic energy, and the
solution of the linear equations (to generate the perturbed
densities) is carried out in a manner that does not scale rapid-
ly with system size. In our implementation, the calculation of
these contributions has been implemented in a linear-scaling
manner such that, for sufficiently large systems, they no
longer dominate the calculation of the coupling constants.

Results and Discussion

The Results and Discussion section is divided into three
parts. We begin, by presenting the theory underlying our
DFT calculations of indirect spin–spin coupling constants in
large molecular systems. Then, in another section, we ana-
lyse the dependence of the various Ramsey contributions to
the coupling constants on the separation between the cou-
pled nuclei. In the final section we present calculations on
the valinomycin and hexapeptide molecules. Since the
number of indirect spin–spin coupling constants increases
quadratically with the size of the system, even a moderately
large molecule contains a very large number of spin–spin
coupling constants, most of which are inaccessible to experi-
ment. In addition to studying, in a statistical manner, those
short-range coupling constants that can be measured experi-
mentally, in the last section we also examine the behaviour
of the indirect spin–spin coupling constants at large internu-
clear separations, in particular, the asymptotic behaviour of
the DSO, PSO, FC and SD contributions. In this section, we
also take the opportunity to examine and illustrate some
well-known relationships of spin–spin coupling theory, such
as the Dirac vector model[43] and the Karplus relation.[44,45]

However, no attempts are made at comparisons with experi-
ment, as this would require a careful consideration of molec-
ular conformations and environmental effects, which is
beyond the scope of the present article.

The theory of spin–spin coupling-constant calculations : In
RamseyKs nonrelativistic theory, the elements of the reduced
indirect nuclear spin–spin coupling tensor KKL of nuclei K
and L are given by the following sum-over-states expression
of second-order perturbation theory [Eq. (1)]:[17,46]

KKL ¼h0jhDSOKL j0i�2
X
nS 6¼0

h0jhPSOK jnSihnSjðhPSOL ÞTj0i
EnS�E0

�2
X
nT

h0jhFCK þ hSDK jnTihnTjðhFCL ÞT þ ðhSDL ÞTj0i
EnT�E0

ð1Þ
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In Equation (1) the first summation is over all excited sin-
glet states jnSi of energy EnS and the second summation is
over all triplet states jnTi of energy EnT. In atomic units, the
DSO, PSO, FC and SD operators are given by Equa-
tions (2)–(5).

hDSOKL ¼ a4
X

i

rTiKriLI3�riKr
T
iL

r3iKr
3
iL

ð2Þ

hPSOK ¼ �ia2
X

i

riK 
 =i

r3iK
ð3Þ

hFCK ¼ 8pa
2

3

X
i

dðriKÞsi ð4Þ

hSDK ¼ a2
X

i

3rTiKsiriK�r2iKsi
r5iK

ð5Þ

In these equations a (�1/137) is the fine-structure con-
stant and the summations are over all electrons. We note
that whereas the DSO and PSO operators in Equations (2)
and (3) are singlet operators, coupling the nuclear magnetic
moments to the orbital motion of the electrons, the FC and
SD operators in Equations (4) and (5) are triplet operators,
coupling the nuclear moments to the spin of the electrons.
Usually, the indirect nuclear spin–spin interactions are ex-
pressed not in terms of the reduced coupling tensor KKL of
Equation (1), but in terms of the indirect nuclear spin–spin
coupling tensor [Eq. (6)] in which gK and gL are the magne-
togyric ratios of the two nuclei, and h is PlanckKs constant.

JKL ¼ h
gK
2p

gL
2p

KKL ð6Þ

Moreover, for freely tumbling molecules as studied in
high-resolution NMR spectroscopy, only the isotropic part
of the coupling tensor is observed [Eq. (7)].

JKL ¼ 1=3TrJKL ð7Þ

Since the FC operator is isotropic and the SD operator
anisotropic, there are no mixed FC/SD and SD/FC contribu-
tions to JKL, which may therefore be uniquely decomposed
into DSO, PSO, FC and SD contributions.
In the present paper, we are concerned with the evalua-

tion of the indirect spin–spin coupling constants in large
molecules by means of DFT. The evaluation of the spin–
spin coupling constants does not follow RamseyKs sum-over-
states expression, but rather the general scheme of response
theory,[47] identifying the reduced coupling tensor KKL of
Equation (1) with the second derivative of the total elec-
tronic energy with respect to magnetic moments MK and ML

of nuclei K and L.[1,4] We will outline this theory in the fol-
lowing two subsections: in the first we will discuss the DFT
energy and in the second we comment on the calculation of
spin–spin coupling constants, with emphasis on computation-
al aspects related to large molecules. Our implementation of
Kohn–Sham DFT for the evaluation of indirect nuclear
spin–spin coupling constants is a modification of the DFT
spin–spin implementation by Helgaker, Watson and

Handy[9] in a development version of Dalton 1.2,[48] based on
the original multiconfigurational self-consistent-field
(MCSCF) spin–spin implementation by Vahtras and co-
workers.[49]

The molecular electronic energy : In Kohn–Sham DFT, the
total electronic energy of a closed-shell molecular system is
given by Equation (8):

E ¼ 2
X

i

hii þ 2
X

ij

ðgiijj�ggijjiÞ þ EXC½1 þ hnuc ð8Þ

in which, in addition to the one- and two-electron Hamil-
tonian integrals [Eqs. (9) and (10)]

hpq ¼ �1=2

Z
�*p ðrÞr2�qðrÞdr�

X
K

ZK

Z
�*p ðrÞr�1K �qðrÞdr ð9Þ

gpqrs ¼
Z Z

�*p ðr1Þ�qðr1Þr�112�*r ðr2Þ�sðr2Þdr1dr2 ð10Þ

we have introduced the proportion of exact exchange g, the
exchange-correlation energy EXC[1] as a functional of the
electron density 1, and the nuclear-nuclear repulsion energy
hnuc. In Equation (8), the summations are over the doubly
occupied molecular orbitals fi(r). Here and elsewhere, we
use the convention that the indices i and j denote occupied
orbitals, the indices a and b denote virtual orbitals and the
indices p, q, r and s are used to represent unspecified (occu-
pied or virtual) orbitals. In Equation (9), ZK is the charge of
nucleus K and rK its distance to the electron.
In the following, we shall assume that the exchange-corre-

lation functional can be written in the form given in Equa-
tion (11):

EXC½1 ¼
Z

f ð1sðrÞ,1tðrÞ,jssðrÞ,jstðrÞ,jttðrÞÞdr ð11Þ

in which 1s(r) and 1t(r) are the density and spin density, re-
spectively, which may be expressed in terms of the alpha
and beta spin densities 1a(r) and 1b(r) as Equation (12):

1sðrÞ ¼ 1aðrÞ þ 1bðrÞ
1tðrÞ ¼ 1aðrÞ�1bðrÞ

ð12Þ

and where we have introduced the density-gradient scalar
products [Eq. (13)]:

jssðrÞ ¼ =1sðrÞ � =1sðrÞ
jstðrÞ ¼ =1sðrÞ � =1tðrÞ
jttðrÞ ¼ =1tðrÞ � =1tðrÞ

ð13Þ

This form of the exchange-correlation functional is appro-
priate for the generalised gradient approximation (GGA).
In the simpler local-density approximation (LDA), there is
no dependence on the density gradient in EXC[1], only on
1s(r) and 1t(r). The detailed form of the exchange-correla-
tion functional depends on the particular DFT approxima-
tion that is made in the calculation.[50,51]

Chem. Eur. J. 2004, 10, 4627 – 4639 www.chemeurj.org G 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 4629

Spin–Spin Coupling Constants 4627 – 4639

www.chemeurj.org


For the optimised unperturbed closed-shell system, the
molecular orbitals satisfy the condition that Kohn–Sham
matrix elements [Eq. (14)]

Fpq ¼hpq þ
X

j

ð2gpqjj�ggpjjqÞþ

Z �
@f
@1s

�p�q þ 2
@f
@jss

=1s � =�p�q

�
dr

ð14Þ

between occupied orbitals and virtual orbitals vanish: Fai=

0. For such systems, the alpha and beta densities are identi-
cal and the spin density vanishes 1t(r)=0; when the system
is perturbed, the spin density no longer vanishes.
In our implementation, the evaluation of the Coulomb

part of the Kohn–Sham matrix [Eq. (14)] is carried out in a
mixed manner. Whereas all contributions that involve over-
lapping charge distributions are evaluated by explicit inte-
gration as described in reference [52], using the McMurch-
ie–Davidson scheme,[53] the contributions that involve non-
overlapping charge distributions are evaluated by fast multi-
pole techniques so that, for sufficiently large systems, the
evaluation of the Coulomb part of the Kohn–Sham matrix
scales linearly with system size. The new code is based on
the original Dalton code, rewritten for the efficient evalua-
tion of the Coulomb part of the Kohn–Sham matrix as de-
scribed in reference [54].
The exchange-correlation code of Dalton has furthermore

been rewritten and adapted for large systems, as described
in reference [54]. In particular, the DFT integration of the
exchange-correlation contribution to the Kohn–Sham matrix
[Eq. (14)] is now carried out in an efficient, linear-scaling
manner. Although only LDA calculations are presented
here, the DFT integrator handles gradient-corrected func-
tionals at little extra cost. However, no linear-scaling techni-
ques have been implemented for the exact Hartree–Fock ex-
change with g¼6 0. For large systems, therefore, we are at
present restricted to pure DFT calculations.
The optimisation of the electronic energy is carried out in

the standard self-consistent manner, but has been extended
to include a second-order trust-region-based Newton
method, based on the original MCSCF implementation of
Jensen, Jørgensen and Ogren.[55] Since the optimisation of
the energy is often more difficult for large than for small
systems, the extension of the DFT optimisation to include
the second-order method is important. The electronic Hessi-
an needed for the second-order optimisation of the energy
is given in the next section.

The calculation of spin–spin coupling tensors : From general
considerations of response theory,[4] the indirect reduced
spin–spin coupling tensors may be written in the form given
in Equation (15):

KKL ¼KDSO
KL þ

X
ai

lPSOK,ai ðhPSOL,ai ÞTþ
X
ai

ðlFCK,aiI3 þ lSDK,aiÞðhFCL,aiI3 þ hSDL,aiÞT
ð15Þ

which may be compared with RamseyKs expression
[Eq. (1)]. In the following we shall discuss each of the terms
in Equation (15), beginning with the DSO term.
The DSO contribution to the coupling tensor is a three-

by-three matrix containing the expectation values given in
Equation (16).

KDSO
KL ¼ 2a4

X
i

Z
�iðrÞr�3K r�3L ðrTKrLI3�rKr

T
LÞ�iðrÞdr ð16Þ

These values are calculated numerically by using the same
integrator as for the exchange-correlation energy. Previous-
ly, this contribution was evaluated in a mixed analytical–nu-
merical fashion that was very expensive for large systems;[49]

in the present implementation, the DSO contribution re-
quires only a fraction of the time needed for the calculation
of indirect spin–spin coupling constants.
The remaining terms to the indirect nuclear spin–spin

coupling tensor [Eq. (15)] correspond to the sum-over-states
terms in RamseyKs expression [Eq. (1)] and contain, for each
occupied-virtual orbital pair ai, the three-dimensional
column vector hPSO

L,ai [Eq. (17)], the scalar hFC
L,ai [Eq. (18)] and

the three-by-three traceless symmetric matrix hSD
L,ai

[Eq. (19)]:

hPSOL,ai ¼ 2a2
Z

�aðrÞr�3L rL 
 =�iðrÞdr ð17Þ

hFCL,ai ¼
8pa2

3
�aðRLÞ�iðRLÞ ð18Þ

hSDL,ai ¼ a2
Z

�aðrÞr�5L ð3rLrTL�r2LI3Þ�iðrÞdr ð19Þ

in which RL is the position of nucleus L. The elements of
lPSOL,ai , l

FC
L,ai, and lSDL,ai in Equation (15) represent the responses

of the system to the nuclear magnetic moments and are ob-
tained from the solution of ten sets of linear equations
[Eq. (20)–(22)]:

X
bj

II
Gss

ai,bjl
PSO
L,bj ¼ �hPSOL,ai ð20Þ

X
bj

RR
Gtt

ai,bjl
FC
L,bj ¼ �hFCL,ai ð21Þ

X
bj

RR
Gtt

ai,bjl
SD
L,bj ¼ �hSDL,ai ð22Þ

The matrices on the left-hand sides of these equations are
diagonal subblocks of the total electronic Hessian, reflecting
the different symmetries of the perturbations (imaginary sin-
glet for PSO and real triplet for FC and SD). If we let u rep-
resent either s (singlet) or t (triplet), the nonzero elements
of the electronic Hessian are given by Equations (23) and
(24):

IIGuu
ai,bj ¼ dijFab�dabFij�gðgabij�gajibÞ ð23Þ
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RRGuu
ai,bj ¼dijFab�dabFij þ 4dsugaibj�gðgabij þ gajibÞþZ

@2f
@12u

�a�i�b�jdr þ 2
Z

@f
@juu

ð=�a�iÞ � ð=�b�jÞdrþ
Z

@2f
@j2su

½ð=1s � =�a�iÞð=1s � =�b�jÞdrþ
Z

@2f
@1u@jsu

½ð=1s � =�a�iÞ�b�j þ �a�ið=1s � =�b�jÞdr

ð24Þ

Whereas the imaginary blocks of the electronic Hessian
[Eq. (23)] are the same in the singlet and triplet cases, the
real blocks [Eq. (24)] are different in the two cases. We note
that the real singlet Hessian—that is, Equation (24) with
u= s—is needed for the second-order optimisation of the
electronic energy. In a slightly different form, the expres-
sions for the singlet and triplet electronic Hessians were first
given by Bauernschmitt and Ahlrichs.[56]

The solution of the linear equations Equations (20)–(22)
is carried out in a direct iterative manner, as described in
reference [57]. The electronic Hessian is never constructed
explicitly, neither for the solution of the response equations
Equations (20)–(22), nor for the second-order optimisation
of the electronic energy. Instead, we directly construct prod-
ucts of the electronic Hessian with trial vectors. The time-
consuming steps of these transformations are the construc-
tion of the Kohn–Sham matrix (with a modified density)
and the direct linear transformation of the trial vector with
the DFT part of the electronic Hessian. We also note that,
in canonical Kohn–Sham theory, the Kohn–Sham matrix is
diagonal (Fpq=dpqep), implying that the leading (and usually
dominant) contribution to the electronic Hessian, dijFab�
dabFij, is diagonal as well. In pure DFT (g=0), the imaginary
Hessian then becomes diagonal, making the solution of the
PSO response equations [Eq. (20)] trivial.
To obtain all couplings to a given nucleus L, we need to

solve the response equations [Eqs. (20)–(22)] only for that
particular nucleus; for the remaining nuclei K¼6 L, it is suffi-
cient to calculate the right-hand sides of Equations (17)–
(19). This observation follows from Equation (15), recalling
that the coupling tensors are symmetric in K and L. This ap-
proach is particularly important in large molecules, where
we frequently are interested in the couplings to only a
subset of all nuclei. However, if all couplings among all
nuclei are required, then we must solve a total of 10n linear
equations, where n is the number of magnetic nuclei in the
molecule.
In our present implementation, the main difficulty with

calculations of indirect nuclear spin–spin coupling constants
in large molecules is the optimisation of the electronic
energy rather than the solution of the linear equations. Be-
cause of the small HOMO–LUMO gap typical of large sys-
tems, the energy optimisation is frequently more difficult
than in small systems and much work remains to be done to
improve this part of the calculation. By contrast, the solu-
tion of the linear Equations (20)–(22) is rather straightfor-
ward and not more difficult than for small systems. Since
the PSO, FC and SD operators are local, screening techni-
ques are very effective at reducing the cost of the evaluation

and convergence is usually achieved in about five iterations,
with no iterations needed for the diagonal PSO equations in
pure DFT.

The spatial dependence of spin–spin coupling constants :
Among the four different mechanisms that contribute to the
isotropic indirect spin–spin coupling, by far the most impor-
tant is the FC mechanism. Formally, its importance stems
from the large prefactor of 8p/3 in Equation (4), which en-
sures that the FC contribution to the coupling constants
often dominates over the DSO, PSO and SD contributions,
at least for one-bond couplings. Nevertheless, none of the
contributions can be a priori neglected, since each may
become important in special cases, as we shall see in the fol-
lowing sections.

The spatial dependence of the FC, SD, PSO and DSO inte-
grals : All four operators [Eqs. (2)–(5)] that contribute to the
indirect nuclear spin–spin coupling constants are local with
respect to the positions of the nuclei, making these constants
small for large internuclear separations. The FC operator
[Eq. (4)], in particular, is extreme in this respect, vanishing
everywhere except at the nuclei. Indeed, we shall later see
that, for sufficiently large separations, the FC contribution
to the spin–spin coupling constants becomes negligible. In-
stead, long-range spin–spin coupling constants are usually
dominated by the DSO and PSO contributions, which are
often negligible at short distances.
To examine the distance dependence of the contributions

to the spin–spin coupling constants in more detail, consider
two spherical Gaussian functions with exponents a and b
and centred at positions A and B, respectively [Eqs. (25)
and (26)].

GaðrAÞ ¼ expð�ar2AÞ, rA ¼ r�A ð25Þ

GbðrBÞ ¼ expð�br2BÞ, rB ¼ r�B ð26Þ

Introducing the centre P of the Gaussian orbital product
Ga(rA)Gb(rB) and the reduced exponent m as Equation (27)

P ¼ a
aþ b

A þ b
aþ b

B

m ¼ ab
aþ b

ð27Þ

we obtain for the operators in Equations (2)–(5) the follow-
ing asymptotic dependence [Eqs. (28)–(31)] of the one-elec-
tron integral on the distances RPK and RPL from the orbital
centre P to the nuclear centres K and L, respectively.

hGajhFCK jGbi / expð�mR2PKÞ ð28Þ

hGajhSDK jGbi / R�3
PK ð29Þ

hGajhDSOKL jGbi / R�2
PKR

�2
PL ð30Þ

hGajhPSOK jGbi / R�2
PK ð31Þ
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Placing the origin of the coordinate system at one of the
nuclei K or L, we then find that the numerators in RamseyKs
expression [Eq. (1)] or equivalently the right-hand sides
[Eqs. (17)–(19)] of the corresponding response-theory ex-
pression [Eq. (15)] decay at least exponentially for the FC
contribution, as R�3

KL for the SD contribution, and as R�2
KL for

the DSO and PSO contributions.
If Slater functions had been used in place of Gaussians in

Equations (28)–(31), the results would have been more com-
plicated but essentially the same except that the FC inte-
grals would then decay in an exponential manner. Indeed, in
the important special case in which A=B, the only differ-
ence is that, for Slater functions, mR2

PK is replaced by (a+
b)RPK in the FC expression [Eq. (28)]. Since, in the remain-
der of this section, we are only concerned with the slower
decay of the DSO and PSO contributions, this difference
does not affect our conclusions.
A somewhat broader question is how the asymptotic be-

haviour of the Gaussians (which are used in this paper) may
affect the FC results presented in later sections. What mat-
ters, however, is not the behaviour of individual orbital
products as reflected in Equation (28), but rather the behav-
iour of linear combinations of such products. Thus, to the
extent that the basis set is complete, the long-range behav-
iour of the FC interaction is correctly represented by Gaus-
sians. This condition is relatively easy to satisfy (in an ap-
proximate manner) in the interior of the molecule, where
basis functions distributed on different nuclei may contrib-
ute to the description of the long-range FC interaction. Far
away from the nuclei, on the other hand, the transmission of
the FC interaction may be poorly described unless the basis
set has been augmented by diffuse functions. In a later sec-
tion, we shall see that the FC interaction decays exponen-
tially in the internuclear separation, even when the electron
density is expanded in Gaussians.

The cancellation of DSO and PSO contributions at large sep-
arations : Although the simple analysis given above indicates
that the spin–spin couplings between two nuclei should
decay as R�2

KL, the decay may be even faster. First, we have
not taken into account the long-range behaviour of the
wave function, nor have we considered the possibility of
cancellation between the different terms. Indeed, we shall
now show that, in the limit of large separations RKL, the
DSO and PSO terms very nearly cancel, leading to an over-
all decay rate of at least R�3

KL. To the best of our knowledge,
the results presented in this section are new and not previ-
ously discussed in the literature.
Consider the isotropic parts of the DSO and PSO contri-

butions to the indirect spin–spin coupling tensor [Eqs. (32)
and (33), respectively], both of which decay as R�2

KL:

KDSO
KL ¼ 2a

4

3
h0j rK

r3K
� rL
r3L

j0i ¼ oðR�2
KLÞ ð32Þ

KPSO
KL ¼ � 2a

4

3

X
n 6¼0

h0j lK

r
3
K

jni � hnj lL

r
3
L

j0i

En�E0
¼ oðR�2

KLÞ ð33Þ

Here, we have suppressed the summation over the elec-
trons, and the angular momentum lK with respect to centre
K is related to the linear momentum p=�i= as in Equa-
tion (34):

lK ¼ rK 
 p ð34Þ

The same applies to lL. We shall now show that, for suffi-
ciently large RKL, the sum of the DSO and PSO contribu-
tions [Eqs. (32) and (33)] decays as R�3

KL rather than as R�2
KL.

First, introducing the Taylor expansion [Eq. (35)]

rL
r3L

¼ RKL

R3KL
þ I3R

2
KL�3RKLR

T
KL

R5KL
rK þ g ð35Þ

we note that the second factor in the numerator of Equa-
tion (33) can be written in the form given in Equation (36):

hnj lL
r3L
j0i ¼ hnjRKL 
 p

R3KL
j0i þ oðR�3

KLÞ ð36Þ

Next, using the identity p= i[H,r], we obtain Equa-
tion (37) for this factor:

hnj IL
r3L

j0i ¼ ðEn�E0Þhnj
RKL 
 ir

R3KL
j0i þ oðR�3

KLÞ ð37Þ

Inserting this result into Equation (33) and invoking the
resolution of the identity, we find that, for sufficiently large
internuclear separations, the PSO term may be written as
the following expectation value [Eq. (38)]:

KPSO
KL ¼ � 2a

4

3
h0j lK

r3K
� RKL 
 ir

R3KL
j0i þ oðR�3

KLÞ ð38Þ

which may be further rewritten as Equation (39):

KPSO
KL ¼ � 2a

4

6
h0j lK

r3K
� RKL 
 ir

R3KL
�RKL 
 ir

R3KL
� lK
r3K

j0i þ oðR�3
KLÞ

ð39Þ

Noting the vector identity [Eq. (40)], which is valid pro-
vided that b is independent of r, we find that Equation (39)
may be rewritten in the form of Equation (41) in which we
have used Equation (35) to establish the final relationship
between the DSO and PSO contributions:

½aðrÞ 
 = � ðb 
 rÞ�ðb
 rÞ � ½aðrÞ 
 = ¼ 2aðrÞ � b ð40Þ

KPSO
KL ¼ � 2a

4

3
h0j rK

r3K
� RKL

R3KL
j0i þ oðR�3

KLÞ ¼ �KDSO
KL þ oðR�3

KLÞ

ð41Þ

Adding together the DSO and PSO contributions to the
spin–spin coupling constant, we thus obtain Equation (42).

KDSO
KL þKPSO

KL ¼ oðR�3
KLÞ ð42Þ
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This demonstrates that the total orbital contribution
decays as R�3

KL. In particular, we note that this is the same
decay rate as for the spin-mediated contributions [Eq. (43)]:

KFC
KLþKSD

KL ¼ oðR�3
KLÞ ð43Þ

We conclude that, for sufficiently large internuclear sepa-
rations, the total indirect spin–spin contributions decay at
least as fast as R�3

KL. We note, however, that, for approximate
wave functions and computational models, this result holds
only in the limit of a complete one-electron basis, since we
have assumed the validity of the relation p= i[H,r].
Let us now consider the signs of the DSO and PSO con-

tributions for large separations. From the expression for the
DSO contribution to the indirect spin–spin coupling con-
stants in Equation (32), we note that, for large separations
RKL, most of the contributions to the integral comes from
points between the nuclei K and L. At such points, rK·rL<0,
producing an overall negative DSO contribution to the cou-
plings. Conversely, for small separations RKL, most points
give rK·rL>0, yielding an overall positive DSO contribution.
From similar arguments, we find that the PSO contribution
to the couplings will be mostly negative for small internu-
clear separations and positive for very large separations. We
conclude that, for large separations Equations (44) and (45)
apply:

KDSO
KL / �R�2

KL < 0, RKL � 0 ð44Þ

KPSO
KL / R�2

KL > 0, RKL � 0 ð45Þ

No such relationships are valid for the FC and SD contri-
butions, which may both either be positive or negative for
large distances. In the next section, we shall see examples of
this behaviour.

The calculation of spin–spin coupling constants : To illustrate
the behaviour of indirect spin–spin coupling constants in
large molecules, we present in this section model calcula-
tions on the valinomycin and hexapeptide molecules. No at-
tempts are here made at comparisons with experiment,
which would require a careful consideration of molecular
conformations and environmental effects. Rather, our pur-
pose is to examine some general features of spin–spin cou-
pling constants in large systems, not previously studied theo-
retically or experimentally. In addition, we shall take ad-
vantage of the vast number of spin–spin coupling constants
produced by calculations on large systems to study, in a stat-
istical manner, some features of spin–spin coupling constants
in a more convincing manner than is possible in smaller
molecules, for example, the dependence of the spin–spin
coupling constants on the number of intervening bonds and
on the internuclear separation, the Dirac vector model,[43]

and the Karplus relation.[44,45]

In Figure 1, we have plotted, on a logarithmic scale and as
a function of the internuclear separation, all reduced indi-
rect nuclear spin–spin coupling constants that involve at
least one carbon atom in valinomycin C54H90N6O18 depicted
in Figure 2. All four contributions (FC, SD, DSO and PSO)
discussed here and later have been calculated at the LDA

level of theory[58,59] in the 6-31G basis,[60] at an experimental-
ly derived geometry and for the isotopic species 1H, 13C, 14N
and 17O. While the use of a more accurate DFT model and a
larger basis is certainly feasible for valinomycin and even
larger systems, the biggest problem with calculations of
spin–spin coupling constants in such molecules is the poten-
tially large number of conformational structures that con-
tribute. The valinomycin calculation presented here should
therefore be viewed as a model calculation. Nevertheless, as
we shall see, such calculations can teach us much about the
behaviour of indirect nuclear spin–spin coupling constants in
large systems.
There are a total of 7587 unique spin–spin coupling con-

stants to carbon in valinomycin (4860 CH couplings,
1431 CC couplings, 972 CO couplings, and 324 CN cou-

Figure 1. The absolute value of the reduced indirect spin–spin coupling
constants (NA�2 m�3) to all carbon atoms in valinomycin, plotted on a
logarithmic scale as a function of the internuclear separation (pm). The
spin–spin coupling constants have been calculated at the LDA/6-31G
level of theory.

Figure 2. The valinomycin molecule with hydrogen atoms in blue, carbon
atoms in black, oxygen atoms in red, and nitrogen atoms in green.
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plings). However, most of these
spin–spin couplings can neither
be observed nor assigned exper-
imentally; for example, at the
LDA/6-31G level, only 497 cou-
plings are larger than 1 Hz and
only 1163 are larger than 0.1 Hz
in magnitude. In Figure 1, the
observable, large one-bond,
geminal and vicinal coupling
constants are located to the
left, whereas the unobservable,
small long-range coupling con-
stants are located to the right.
In the following, we shall first

consider the short-range spin–
spin coupling constants of vali-
nomycin in the next subsection,
followed by the consideration
of the long-range couplings of
valinomycin and the smaller
hexapeptide molecule. We will
conclude by considering the
Dirac vector model and the Karplus relation in the valino-
mycin molecule.

Short-range coupling constants in valinomycin : In Figure 3,
we have plotted, on a logarithmic scale as a function of the
internuclear separation, all calculated indirect spin–spin cou-
pling constants that are greater than 0.1 Hz in magnitude.
Since there are many such coupling constants and since they
cannot individually be compared with experiment, they have
not been tabulated here. Instead, we have listed some statis-
tical data on the spin–spin coupling constants in valinomycin
for up to five intervening bonds in Table 1. This table also
contains information on the relative importance of the FC,
SD, DSO and PSO contributions to the total spin–spin cou-
pling constants, calculated by averaging over all calculated

spin–spin coupling constants. Note that these statistical data
are based on large numbers of individual coupling constants.
The largest coupling constants in valinomycin are the

one-bond coupling constants, with mean absolute values of
131, 47, 12 and 28 Hz for 1JCH,

1JCC,
1JCN and 1JCO, respective-

ly. However, as seen from the upper left corner of Figure 3
up to 162 pm, there are large variations among these cou-
plings—the largest one-bond coupling constants are 60%
larger and the smallest 65% smaller than the mean values.
All one-bond coupling constants are positive. We also note
that, whereas the 1JCH and 1JCC couplings are completely do-
minated by the FC contribution, the 1JCN and 1JCO couplings
have sizable PSO contributions.
As seen from Figure 3 between 200 and 262 pm as well as

from Table 1, the geminal coupling constants in valinomycin
are much smaller than the one-bond coupling constants.
Specifically, for the CH, CC, CN, and CO interactions, the
mean absolute values of the geminal couplings constitute
1.4%, 2.3%, 17%, and 25%, respectively, of the corre-
sponding one-bond couplings. As expected from the Dirac
vector model,[43] the geminal couplings are predominantly
negative (vide infra). However, the spans of the coupling
constants are large: �4.1 to 5.5 Hz for 2JCH, �1.7 to 4.2 Hz
for 2JCC, �0.7 to 6.4 for 2JCN and �24.7 to �0.7 for 2JCO. Like
the one-bond coupling constants, the geminal coupling con-
stants are dominated by the FC contribution, although we
note that the 2JCH constants have large DSO and PSO con-
tributions of opposite signs.
The vicinal coupling constants, which are located between

237 to 395 pm in Figure 3, are about as large as the geminal
couplings, in particular, for CH and CC. Thus, the mean ab-
solute values of 3JCC and 3JCH are 3.2 and 1.8 Hz, respective-
ly, whereas the corresponding values for 2JCC and 2JCH are
1.8 and 1.1 Hz, respectively; also, the spans of the CC and
CH vicinal couplings are larger than those of the corre-
sponding geminal couplings. By contrast, for CN and CO,

Figure 3. The absolute value of the indirect spin–spin coupling constants
(Hz) in valinomycin greater than 0.1 Hz, on a logarithmic scale as a func-
tion of the internuclear distance (pm). We have used blue, black, red and
green for the CH, CC, CO and CN coupling constants, respectively. The
spin–spin coupling constants have been calculated at the LDA/6-31G
level of theory.

Table 1. Statistical measures and relative contributions of LDA/6-31G indirect spin–spin coupling constants in
valinomycin. The mean absolute (mabs), mean, minimum and maximum values are given in Hz, the relative
contributions are percentages of the total spin–spin coupling constants; n is the number of intervening bonds
and N the number of occurrences of this n-bond coupling.

atoms n N mabs mean min max FC SD DSO PSO

CH 1 84 131.0 131.0 111.5 172.4 98.1 0.4 1.0 0.5
2 126 1.8 �0.7 �4.1 5.5 81.7 3.1 30.4 �15.2
3 174 3.2 3.1 �0.3 10.3 152.9 0.7 �73.5 19.9
4 114 0.3 0.0 �0.5 1.5 22.4 7.1 92.6 �22.1
5 144 0.1 0.1 �0.2 0.7 31.3 2.3 63.1 3.4

CC 1 42 47.1 47.1 30.4 73.3 97.9 1.8 0.8 �0.6
2 51 1.1 0.4 �1.7 4.2 100.3 1.5 3.2 �4.9
3 54 1.8 1.8 �0.2 5.3 385.3 118.6 �991.4 587.6
4 54 0.2 0.0 �0.5 0.5 103.9 �1.6 3.4 �5.7
5 72 0.1 0.1 0.0 0.4 212.6 46.1 �234.8 76.1

CN 1 12 11.6 11.6 7.4 16.2 107.7 2.1 1.2 �11.1
2 18 2.0 1.7 �0.7 6.4 86.0 5.2 �3.1 11.9
3 18 0.6 0.6 �0.1 1.8 39.9 43.0 �8.8 26.0
4 18 0.1 0.0 �0.2 0.2 91.9 �2.7 26.5 �15.8
5 18 0.0 0.0 �0.1 0.0 80.4 0.0 25.5 �5.8

CO 1 24 27.5 27.5 13.1 43.0 77.3 �3.8 �1.0 27.4
2 30 7.0 �7.0 �24.7 �0.7 117.0 2.7 2.5 �22.2
3 36 0.7 �0.7 �2.5 0.2 159.7 �1.1 18.4 �76.9
4 78 0.2 �0.2 �1.5 0.1 75.0 10.9 19.5 �5.4
5 48 0.1 0.0 �0.4 0.0 83.2 �3.9 18.6 2.2
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the vicinal couplings are much smaller than the geminal
ones. Following the Dirac vector model, most of the vicinal
coupling constants are positive. Finally, unlike the one- and
two-bond coupling constants, the vicinal coupling constants
are not dominated by the FC contribution. Indeed, except
for the small SD contributions to the 3JCH and 3JCO cou-
plings, all four contributions are large. For the vicinal 3JCC
couplings, in particular, there are large contributions of op-
posite signs from the DSO and PSO operators.
From Table 1, we note that the long-range four- and five-

bond couplings are mostly smaller than 1 Hz, the largest
4JCH coupling being 1.5 Hz. However, we shall see later that
some of the couplings larger than 1 Hz in Figure 3 are very
long-range in the sense that the two coupled nuclei are only
remotely bonded, through more than ten bonds. Finally,
except for the 4JCC couplings, the long-range spin–spin cou-
pling constants are not dominated by the FC contribution.
In the next subsection, we shall study the long-range behav-
iour of the spin–spin coupling constants in more detail.

The dependence of the coupling constants on the internuclear
separations : From Figure 1, we see that the indirect nuclear
spin–spin coupling constants initially decay fast (exponen-
tially) with increasing separation between the coupled
nuclei. However, beyond about 500 pm, the decay is much
slower. Indeed, for large separations, the decay of the spin–
spin coupling constants is surprisingly slow.
To understand the reason for this behaviour, we have in

Figure 4 plotted separately the negative and positive FC,
SD, DSO and PSO contributions to the reduced spin–spin
coupling constants. (Reduced coupling constants are used to
ensure that the signs of the contributions are not arbitrary.)
From these plots we see that whereas the FC contribution
dominates the couplings for small distances, it decays much
faster than the other contributions with respect to the sepa-
ration of the coupled nuclei. Indeed, as predicted by our
simple analysis above, the FC contribution decays exponen-
tially with increasing separation. Note that all FC couplings
occupy a rather broad diagonal band, which extends over
approximately three orders of magnitude. For sufficiently
large separations, there appears to be a random distribution
of positive and negative FC contributions.
The SD contribution is smaller than the FC contribution

for small internuclear separations, but decays more slowly
(as R�3

KL) and eventually dominates over the FC contribution
for large separations, see Figure 4. However, beyond about
500 pm, all spin–spin coupling constants are completely
dominated by the DSO and PSO contributions, as expected
from the R�3

KL decay of the SD contribution and the R�2
KL

decay of the DSO and PSO contributions.
The plots in Figure 4 confirm the predicted signs of Equa-

tions (44) and (45): for small separations, the DSO contribu-
tions are predominantly positive and the PSO contributions
negative; conversely, for large separations, the DSO contri-
butions are negative and the PSO contributions positive.
However, from a careful inspection of Figure 4 it follows
that, for large separations, the DSO contributions are slight-
ly larger than the PSO contributions in magnitude, indicat-
ing that the cancellation between the DSO and PSO contri-

butions is incomplete in the small 6-31G basis. As a result,
the sum of the DSO and PSO contributions and hence the
total spin–spin coupling constants become negative at large
distances. The cancellation of these terms at large separa-
tions is discussed in greater detail below.

The dependence of the spin–spin coupling constants on the
number of intervening bonds : Having discussed the decay of
the coupling constants with increasing internuclear separa-
tion, let us now consider how the coupling constants depend
on the number of intervening bonds. In Figure 5, we have
plotted the maximum, mean, and minimum absolute spin–
spin couplings in valinomycin as functions of the number of
intervening bonds and on the internuclear separation.
Although the two plots of the mean spin–spin coupling

constants in Figure 5 are quite similar, there are some strik-
ing differences between the plots of maximum couplings
constants. Whereas the plotted maximum coupling constant
decreases monotonically with increasing separation in the
bottom view, it exhibits several peaks as a function of the
number of intervening bonds in the top view. In particular,
the peaks at 11, 13, and 15 bonds correspond to the long-
range couplings 11JCO=�2.4, 13JCO=�1.1 and 15JCO=
�2.3 Hz. However, these large long-range interactions do
not arise as a result of special, unusually large couplings

Figure 4. The absolute values of the FC, SD, DSO and PSO contributions
to the reduced LDA/6-31G spin–spin coupling constants (NA�2 m�3) to
all carbon atoms in valinomycin, plotted on a logarithmic scale as a func-
tion of the internuclear separation (pm). Negative contributions are plot-
ted on the left, positive contributions on the right (overlaid on the contri-
butions of the opposite sign).
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through a large number of covalent bonds. Rather, they
arise as a result of short-range through-space interactions,
the respective internuclear separations being only 318, 343
and 340 pm. Finally, we note that all long-range couplings
larger than 1 Hz are dominated by the FC interaction (�2.3,
�1.0 and �2.2 Hz, respectively). In short, large long-range
couplings arise only when the coupled nuclei are sufficiently
close for the FC interaction to contribute significantly in a
through-space manner.

Basis-set convergence of the long-range spin–spin coupling
constants : To illustrate the basis-set convergence of the
long-range spin–spin coupling constants, we have carried out
calculations on the hexapeptide C16O6N6H28 model system
shown in Figure 6, using different basis functions. The hexa-
peptide model is much smaller than valinomycin but just as
long, making it suitable for studies of long-range coupling
constants.
In Figure 7, we have plotted the different contributions to

the LDA spin–spin couplings involving at least one of the
end H, C, N and O atoms in the hexapeptide model, illus-
trating the different asymptotic behaviour of these contribu-
tions to the spin–spin coupling constants in the large HII
basis.[61, 62] We note in particular the near coincidence of the
points representing the DSO and PSO contributions, indi-
cating near convergence of these contributions with respect
to the basis set.
To exhibit the basis-set convergence in a clearer manner,

we have in Figure 8 plotted the maximum absolute values of
the different contributions to the spin–spin coupling con-
stants in the hexapeptide model for different internuclear

separations. Each maximum value has been obtained from a
comparison of all coupling constants in intervals of 200 pm.
We note the extreme sensitivity of the PSO contribution to
the quality of the basis set. As the basis set increases in the

Figure 5. The maximum (dashed line), mean (full line) and minimum
(dotted line) absolute spin–spin coupling constants in valinomycin (Hz)
as a function of the number of intervening bonds (top) and the internu-
clear separation (pm; bottom). The spin–spin coupling constants have
been calculated at the LDA/6-31G level of theory.

Figure 6. The model hexapeptide molecule. The indirect spin–spin cou-
pling constants have been calculated for the top H, C, N and O atoms.

Figure 7. The FC (red), SD (green), DSO (light blue), and PSO (dark
blue) contributions to all indirect spin–spin coupling constants involving
at least one of the H, C, N and O end atoms in the hexapeptide model,
calculated at the LDA/HII level of theory. The absolute values of the
contributions (Hz) have been plotted on a logarithmic scale, as a function
of the internuclear separation (pm).
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sequence STO-3G,[63] 6-31G[60] and HII,[61,62] the (positive)
PSO contributions increase by almost an order of magni-
tude. By comparison, the basis-set dependence of the re-
maining contributions is insignificant at long separations.
As already established, the long-range spin–spin coupling

constants are dominated by negative DSO and positive PSO
contributions. Moreover, whereas each of these contribu-
tions separately decays as R�2

KL, their sum converges as R�3
KL.

However, because of the extreme sensitivity of the long-
range PSO contribution to the basis set, this faster conver-
gence of the total spin–spin coupling constants is difficult to
achieve in a finite basis.
In Figure 9, we have plotted, in a manner similar to that

in Figure 8, the maximum total spin–spin coupling constants
in the hexapeptide model in intervals of 200 pm. As the
basis set increases from STO-3G to HII, the (negative) long-
range total spin–spin coupling constants decrease by about
an order of magnitude as the description of the positive
PSO contribution becomes more accurate. Clearly, in our
present LDA/6-31G calculations of the long-range coupling
constants of valinomycin, we cannot claim to have reached
basis-set saturation with respect to the PSO contribution to
the spin–spin coupling constants.
We note that for both molecules studied here (valinomy-

cin and hexapeptide), we observe the theoretically predicted
asymptotic long-range behaviour of the spin–spin coupling
constants discussed earlier. These predictions were made
without any consideration of molecular structure, analysing
only the dependence of the one-electron integrals on the in-
ternuclear distance. Thus, at smaller distances we can expect
significant deviations from these simple predictions. In par-
ticular, coupling constants across a few bonds—say, five to
seven bonds—may sometimes be observed because they are
much larger than expected from the distance between the
coupled nuclei. Such large long-range couplings arise be-
cause of special bonding situations not encountered here.

The Dirac vector model : Let us now consider the depen-
dence of the sign of the coupling constants on the number
of intervening bonds. In Figure 10, we have plotted the pro-
portion of positive reduced spin–spin coupling constants in
valinomycin as a function of the number of intervening
bonds and as a function of the internuclear separation. For
small separations, we observe the well-known tendency of
alternating signs for one-bond, geminal, and vicinal coupling
constants. Beyond five- or six-bond couplings, this alterna-
tion disappears as the FC contribution becomes less impor-
tant until, at large distances, all couplings become negative,
as expected from our discussion above. No such alternation
is observed when the proportion of positive reduced cou-
pling constants is plotted as a function of the separation be-
tween the nuclei. Indeed, this behaviour is expected from
the Dirac vector model,[43] which relates the relative signs of

Figure 8. The convergence of the maximum absolute values (over 200 pm intervals) of the FC, SD, DSO and PSO contributions to the indirect spin–spin
coupling constants (Hz) involving at least one of the H, C, N and O end atoms in the hexapeptide model, plotted as functions of the internuclear separa-
tion (pm). The calculations have been carried out at the LDA level in three basis sets: STO-3G (dotted line), 6-31G (dashed line), and HII (full line).

Figure 9. The convergence of the maximum absolute values (averaged
over 200 pm intervals) of the total indirect spin–spin coupling constants
(Hz) involving at least one of the H, C, N and O end atoms in the hexa-
peptide model, plotted as functions of the internuclear separation (pm).
The calculations have been carried out at the LDA level of theory in
three basis sets: STO-3G (dotted line), 6-31G (dashed line), and HII (full
line).
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the coupling constants to the number of intervening bonds
rather than to the internuclear separation. We note here
that this alternation is restricted to the FC term, which dom-
inates short-range couplings. No such alternation is observed
for the other contributions to the coupling constants.
The predominance of negative couplings for large separa-

tions in Figure 10 follows from the dominance of the DSO
contribution at large separations as observed in Figure 4. It
is possible that, in a large basis, when a more complete can-
cellation of the DSO and PSO terms is achieved, there will
be an even distribution of positive and negative coupling
constants at large separations.

Vicinal coupling constants and the Karplus relation : Among
the 7587 coupling constants that we have calculated in vali-
nomycin, there are a total of 282 vicinal couplings that in-
volve one or two carbon atoms. In Figure 11, we have plot-
ted all these couplings as functions of the dihedral angle as-
sociated with the coupled atoms. This figure clearly demon-
strates that such couplings always vanish for dihedral angles
close to 908. For angles different from 908, there is a large
variation in the magnitude of the coupling constants. In
part, this variation arises from the fact that, in the figure, we
have combined all types of vicinal couplings, regardless of
the type of coupled nuclei and the type of intervening
nuclei. As can be seen from the separate plot for the non-
FC contributions to these constants, the Karplus curve arises

solely from the FC contribution to the vicinal coupling con-
stants.

Conclusions

We have demonstrated that indirect nuclear spin–spin cou-
pling constants now can be calculated for large molecular
systems, containing more than 100 atoms. Such calculations
have been carried out for the valinomycin and hexapeptide
molecules and used to study the behaviour of long-range
coupling constants. Whereas short-range coupling constants
are often dominated by the FC term, long-range coupling
constants are dominated by the DSO and PSO terms, which
separately decay in a manner inversely proportional to the
square of the distance between the coupled nuclei, but
taken together decay in a manner inversely proportional to
the cube of this distance. At large separations, the DSO and
PSO contributions to the reduced coupling constants
become negative and positive, respectively. However, be-
cause of a very slow basis-set convergence of the PSO term
at large internuclear separations, this faster decay is only ob-
served with large basis sets. The FC and SD contributions to
the indirect spin–spin coupling constants decay exponential-
ly and inversely proportionally to the cube of the internu-
clear distance, respectively. In large molecular systems, indi-
rect spin–spin couplings larger than 1 Hz may occur for
atoms separated by more than ten bonds if these atoms are

Figure 10. The percentage of positive reduced indirect spin–spin cou-
plings in valinomycin as a function of the number of intervening bonds
(top) and the internuclear separation (pm; bottom). The spin–spin cou-
pling constants have been calculated at the LDA/6-31G level of theory.

Figure 11. The vicinal coupling constants in valinomycin (Hz) involving
at least one carbon atom as a function of the dihedral angle of the cou-
pled nuclei. Top: the total spin–spin couplings; bottom: the non-FC con-
tributions. The spin–spin coupling constants have been calculated at the
LDA/6-31G level of theory.
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close together, because of strong through-space FC interac-
tions.
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